
TrustSECO: A Distributed Infrastructure for
Providing Trust in the Software Ecosystem

Fang Hou1[0000−0002−8042−3278], Siamak Farshidi2[0000−0001−6139−921X], and
Slinger Jansen1,3[0000−0003−3752−2868]

1 Utrecht University, Utrecht, the Netherlands
{h.fang,slinger.jansen}@uu.nl

2 University of Amsterdam, Amsterdam, the Netherlands
s.farshidi@uva.nl

3 Lappeenranta University of Technoly, Lappeenranta, Finland

Abstract. The software ecosystem is a trust-rich part of the world.
Collaboratively, software engineers trust major hubs in the ecosystem,
such as package managers, repository services, and programming lan-
guage ecosystems. However, trust entails the assumption of risks. In this
paper, we lay out the risks we are taking by blindly trusting these hubs
when using information systems. Secondly, we present a vision for a
trust-recording mechanism in the software ecosystem that mitigates the
presented risks. This vision is realized in TrustSECO: a distributed in-
frastructure that collects, stores, and discloses trust facts about informa-
tion systems. If our community manages to implement this mechanism,
we can create an urgently needed healthy and secure software ecosystem.
Finally, we report on the current status of the project.

Keywords: software ecosystems · distributed ledger · software trust ·
repository mining · software security.

1 Introduction

A software ecosystem (SECO) is a set of actors functioning as a unit and inter-
acting with a shared market for software and services, together with the rela-
tionships among them [8]. Society is entirely dependent on a healthy worldwide
SECO, as every aspect of our society is dependent on information systems and
other software. In addition, many worldwide actors rely on the different links in
the software supply chain, which works on the basis of trust, hence, trust plays
a key role in our society as well as in information systems. We identify software
trust as a willingness of the information systems end-users to take risks based
on a subjective belief that information system providers will exhibit reliable be-
havior to provide its required functionalities, operate reliably and consistently
without failures, even under uncertainty. Hence the system characteristics, such
as reliability, fault-tolerance, safety, or security should be considered as the fac-
tors to judge an information system’s trustworthiness [2, 14].



2 Hou, Farshidi, and Jansen

Although the worldwide SECO is a trustful environment, it presents many
dangers to society. First, as information systems are malleable, they evolve con-
stantly and are evolved by actors that may have bad intentions. Also, most infor-
mation systems are used for critical infrastructure on which our society depends.
In addition, when information systems end-users select a software package, they
give a large dosage of trust to the package manager and language ecosystem that
they are part of, most of them insufficiently think about security and trust [9].

Thus, attackers just exploit this kind of trust to carry out attacks. For in-
stance, a package registry can be compromised through Registry Exploitation:
hijacking the account of a registry maintainer or package maintainer, hacking
the registry itself, or hacking the registry infrastructure. Furthermore, it is pos-
sible to publish a package with a similar name (a.k.a. Typosquatting) or exactly
the same in another registry, leading to downloading compromised or vulnerable
packages. Also, a hacker can transfer ownership of an abandoned package to
herself and then compromise it. There are also possibilities for open source de-
velopers to compromise packages, such as by a disgruntled insider or a malicious
contributor. Attackers will use these attack vectors to insert malicious code, in-
fect packages with viruses, provide back doors, and steal sensitive data. These
attacks frequently make headlines, and the outcomes are devastating. With the
constant increase in the number of detected vulnerabilities, it is time to radi-
cally rethink the worldwide SECO, information systems, and the trust we put
in them.

In this paper, we present TrustSECO4, a community-managed infrastructure
that underpins the SECO with a trust layer. The infrastructure gathers data on
trust in particular software packages and projects. Usually, this data is made
available to the SECO hubs, such as package managers and repository websites.
With this data, the software end-users can collectively determine whether pack-
ages and package versions are reliable, containing vulnerabilities, and are trusted
by other users.

The rest of this paper is structured as follows. In Section 2, we outline the key
components of TrustSECO: the distributed ledger technology and trust score cal-
culation component. Section 3 describes the trust score calculation, which uses
facts from the SECO about information systems to provide trust data to end-
users. Section 4 shows the initial vision of the distributed ledger design, which
includes ledger design, data sources, and ledger sustainability. Furthermore, we
discuss the evaluation of the TrustSECO platform in Section 5. Finally, in Sec-
tion 6 we summarize our work and provide a status update of the project.

2 TrustSECO Infrastructure

The TrustSECO infrastructure provides a distributed system that enables soft-
ware end-users to evaluate and install the software based on its trustworthiness,
intending to provide a safer SECO. The main object of interest for TrustSECO

4 https://secureseco.org/secureseco-introduction/trustseco/

https://secureseco.org/secureseco-introduction/trustseco/


TrustSECO: A Distributed Infrastructure for Providing Trust 3

are versions of software packages, i.e., collections of components that form a co-
herent whole that can be deployed on a system to provide a set of features to a
software end-users.

The main stakeholders are software end-users who install and use the soft-
ware, and software providers including software producing organizations, or-
ganizations that create package managers, and software engineers who create
the software or packages. These different stakeholders collect trust data about
software packages, by, for instance, looking at past performance, reproducible
builds, and vulnerability databases. Furthermore, the stakeholders collect trust
data about software providers who have contributed to the software package. In
addition, the stakeholders collect trust data about the package manager offering
software packages.

To ensure that the community can evenly contribute and make use of the
infrastructure, we envision it as a fully distributed system, in particular a Dis-
tributed Ledger (DL) containing trust facts. The DL collects trust facts and
observations from different stakeholders who participate in the network. Trust
facts can be collected from various data sources, for instance, they can be from
the participants in the TrustSECO DL, or different data sets in the networks.
Subsequently, ecosystem hubs can reuse the data from the TrustSECO DL, base
on our trust score calculation mechanism, to establish whether a particular ver-
sion of a package can be trusted.

An example of how TrustSECO works is illustrated by an example with the
Node Package Manager(npm). When a software engineer is developing software
and including existing npm components, she might download them through npm.
If npm was integrated with TrustSECO, TrustSECO can be used to provide
warnings about particular configurations. TrustSECO, before downloading and
installing a package, can for instance automatically advise the software engineer
on the trust rating of the package. If the package (version) is below a particular
rating, for instance, set by the software engineer’s organization, npm can use
TrustSECO to select another version of the package or even a wholly different
package. Furthermore, TrustSECO can warn the software engineer, when any
new vulnerabilities arise in one of the installed packages. In some scenarios,
TrustSECO can be used to automatically re-configure a system to ensure that
the configuration matches the organization’s security requirements.

The TrustSECO infrastructure consists of the following parts: the trust fact
DL, the trust fact observer client, the trust score calculation mechanism, and the
SECO alert service. We provide an overview of the TrustSECO infrastructure in
figure 1.

Distributed Ledger Technology

Distributed Ledger Technology (DLT) has been most successfully applied in
supply chain management, which is not surprising, as DLT concerns the interac-
tion between multiple untrusted parties that collaboratively achieve a goal [6].

Hence, we bring DLT into the worldwide SECO, i.e., the complex network
of software providers that collaboratively provide software for every computer
on earth to make the SECO more secure, reliable, and trustworthy. There are



4 Hou, Farshidi, and Jansen

Fig. 1. The main four components of the TrustSECO infrastructure are visualized. All
trust data are stored in the TrustSECO DL. Using the score calculation, the alert system
notifies the stakeholders about the status in the SECO.

two reasons to choose a distributed ledger. First, as the community needs to
rely on a trustworthy source, we aim for the trust data to be collected and
shared through a consensus mechanism, where the perception of the package
will become more reliable and complete as more participants add data about
the package. Secondly, as the TrustSECO platform needs to outlive the duration
of this academic project, we aim for the TrustSECO platform to be maintained
by the community.

The DL we use includes the trust data storage structure and serves as the
basis for the TrustSECO implementation. The trust data will be crawled and
confirmed by the TrustSECO nodes, i.e., trusted nodes in the network that col-
laboratively confirm trust facts. Moreover, with the employment of the consensus
mechanism, all trust facts will be validated by the nodes. Subsequently, those
confirmed the trust data will be compiled into stakeholders’ specific trust score
calculation and reports about software packages and versions that are used by
hubs in the SECO that need trust data to ensure trustful software usage. For a
full discussion on the DL and its design, see Section 4.

Trust fact observer client
Trust fact observer client will be executed by the participants in the TrustSECO
DL as a mechanism for adding new trust facts to the ledger. Meanwhile it con-
tinually monitors the SECO along with package managers for new trust facts
and occasionally performs jobs, such as trying to reproduce a build. When these
facts are submitted, a set of items are checked, such as the submitter’s trustwor-
thiness and observation. An overview of the data stored is found in Table 1. The
data must be retrievable relatively fast, even though these data are extensive.

Trust Score Calculation Component
We develop a score calculation mechanism to provide insight into the trust-
worthiness of the package configuration. This is especially suitable for package
managers with self-contained package configurations. The score calculation can
be used to ask for particular configurations, such as ”a configuration that pro-
vides Python3 and qtbitcointrader with a trust level of at least level X”. The
Configuration Trust Level Calculation can also provide a configuration where
X is the highest possible. The configuration algorithm will mostly consider the
weakest link principle, i.e., the package with the lowest trust level is the primary
determinant for the configuration’s combined trust rating. We create a tool that



TrustSECO: A Distributed Infrastructure for Providing Trust 5

So
urc

e C
re

ate
d

So
urc

e B
uilt

So
urc

e Test
ed

So
urc

e C
om

m
itt

ed to
 R

epo

Pack
age

 B
uilt

Pack
age

 Test
ed

Pack
age

 R
ele

ase
d

Pack
age

 P
ublis

hed

Pack
age

 D
ow

nlo
aded

Pack
age

 In
st

alle
d

Pack
age

 R
un

Pack
age

 R
em

ove
d

Software Engineer

Identity? W W W R/W R W W R/W R R/W R/W W

Internal Integrity

Syntactically correct W W - R R - R R R R R -

Style correct W W - R R - R R R R R -

Reproducible build - W - R W - R R R R R -

Compiler trusted - W - R W - R R R R R -

Package integrity - - - - W W R R R R R -

Code complete - - - - - - W R R R R -

External Integrity

Virus scanned - - - W W R W R R R R -

CVE free - - - W W W W W R R R -

Most recent version - - - - - - W R R R R -

Dependency tree up to date - W W - W W W W R R/W R -

Tested

Code tested - - W R - W R R R R R -

Acceptance tested - - - - - W R R R R R -

License

License present - - - - - - W R R R R R

License compliant W - - - - - R/W R R R R R

End User

Identity? - - - - - - - - W R/W R/W R/W

Checked on distributed ledger R

Added to distributed ledger W

Table 1. Each column represents a step in the software development life cycle. Each
row indicates an example of a trust fact that we can read or write to the DL, with the
goal of securing the worldwide SECO. For convenience, we have shaded the “writes”
red, the “reads” green, and the “reads/writes” yellow. Please note that the rows in this
table are an incomplete list of the technical factors that we describe further in Section
3.

supports package managers in finding the most trusted configuration of compo-
nents and automatically developing a migration path. It becomes possible that
configurations of which the trust rating has dropped get reconfigured automati-
cally by their package managers by replacing one of the dependent components
with a better trust rating, creating a safer SECO.

The package trust service will be somewhat intelligent: with several repro-
ducible builds, low fix times, and few occurrences in Common Vulnerability and
Exposure databases (CVEs), packages will have higher scores. This model will
be designed such that it is extensible with new trust data if it becomes avail-
able. The scores will possibly be normalized to easily usable trust levels from
Untrusted (T0) to Trusted (T5). One of the unique aspects of the TrustSECO is
that it also uses the other package data to distribute packages over the trust levels
evenly, to encourage package publishers to improve trust metrics continuously.
Without action, their trust level can drop because the ecosystem is improving
as a whole.

In Section 3, we will explore what data we can ethically gather on package
software engineers, what data is available about project health.



6 Hou, Farshidi, and Jansen

Software Ecosystem Alert System
We build a tool that asks for data from the Trust Score Calculation Component
and updates package providers and end-users on the status of their products and
configurations. Additionally, the TrustSECO platform can be seen as an intrusion
detection system, and if malware code is identified in a software package, we can
warn both the end-users and the providers. TrustSECO uses all the data from
Table 1 to secure the SECO, this can be done by running the Trust Reporting
Service as a cron job on a user’s system.

There are other services available that currently provide alerts to software
end-users about vulnerabilities. For instance, many package managers provide
some checkboxes on whether a package is vulnerable. One of the most notable
commercial services is Snyk.io, which has developed its proprietary tools and
database for vulnerability notification. While Snyk has been exceedingly accessi-
ble for such notifications, they insufficiently address the open-source community,
its concerns, and its need for openness.

3 Trust Score Calculation

We provide information systems end-users with insight into the trust factors ef-
ficiently, by calculating a trust score for each information system and software
package. Furthermore, package managers can use the trust scores to deploy reli-
able information systems automatically, so the trust scores should be readable by
both humans and systems. The trust scores must have several properties. First,
they should be multi-dimensional, i.e., they should give insight into the package,
the package version, and the community of software engineers that produced
it. Secondly, they must be fully transparent, such that any other stakeholder
can calculate the same trust scores with the same data, which also helps build
consensus about trust in the broader software engineering community. Thirdly,
the scores must be combinatorial, in the sense that scores can be combined to
calculate trust ratings for package compositions. Finally, the trust scores should
be numeric to rapidly identify the trustworthiness of a software package version.

What are we scoring?
When we consider what can be scored to determine the software trust, we first
confirm the trust factors through a series of research to determine the dimensions
of the trust score based on these factors, however, we found most literature
only cover SDLC or some perspectives throughout the package selection process,
instead of providing a comprehensive metrics for the whole picture, and some
metrics lack practicality cannot be collected easily. We consider trustworthiness
attributes will be attributed to the following aspects:

Technical Factors. Quality attributes matter most when software end-users
are accepting software [11]. Here, we consider the technical factors more about
the quality attributes to measure the packages and versions from the perspectives
of both functional and non-functional requirements, such as if the functions

Snyk.io


TrustSECO: A Distributed Infrastructure for Providing Trust 7

align with users’ requirements and original design, or if there are any outdated
dependencies or numbers of open issues.

Also, we focus on vulnerability, as it negatively impacts software quality.
If a vulnerability is detected in a package version, the trust referred to above
is diminished appropriately, depending on the severity of the vulnerability. We
are currently experimenting with a multiplier between 0 and 1 that diminishes
the otherwise good trust score when a particular version contains a threatening
vulnerability. In this way, other versions can keep a relatively high score, while
this version is lowly rated. One of the significant upsides of TrustSECO taking
care of this information is that the software end-users do not have to worry
about keeping their systems up to date. If connected to a package manager that
monitors the system, it can automatically reconfigure the system to include a
version with a high trust score.

Ecosystem Factors. Ecosystem factors are not only the intrinsic properties to
all stakeholders, but also reflect the relationship between end-users with software
engineers, organizations, and communities [9]. Thus, first of all, we focus on the
software engineers’ experiences, knowledge, and skills; organizations or commu-
nities’ reputation, popularity, and positive support; and interest from various
stakeholders, e.g., packages’ number of tags in Stack Overflow, or the number
of downloads in npmjs. In addition, the cost is an important part of ecosystem
factors, as one of our major goals in adopting software packages is to reuse the
fulfilled program to speed up the coding process, and save costs. Here we empha-
size the time and economic costs as the key elements to implement the software
package, e.g. project time, budget, and software licenses.

A score with multiple dimensions
Based on various definitions of software trust and the SECO’s context, we believe
that software trust does not only talk about the software package itself but also
a complex and comprehensive concept about all relevant impact factors. Score
calculation can be unpacked through the following dimensions:

Packages + Versions. Building trust is an ongoing process that changes over
time. The same package may have different trust scores in different versions.
Packages’ and package versions’ trust scores are influenced by several factors,
such as: (a) bug-fixing times, (b) end-users’ experiences with specific package
versions, (c) known vulnerabilities, (d) unreliable dependencies, (e) trust in the
individual software developers.

Package Managers. Package managers managing a collection of software
packages, are a part of the infrastructure that enables anyone to use the soft-
ware and a SECO’s backbone. Unfortunately, these package managers are not
as secure as users think they are. At different stages in the software life cycle,
vulnerabilities [1] can enter the software, and the package managers assume no
responsibility for this. Therefore the end-users’ concern for package managers
should be on security and continuous support. TrustSECO cares about the fol-
lowing facts about package managers: (a) Usage frequency. (b) Any malicious,



8 Hou, Farshidi, and Jansen

outdated, or broken dependencies. (c) Reputation and popularity. (d) Compli-
ance with security standards. (e) Recent compromises of the package manager.
Software Engineers. The software engineers who provide our society its crit-
ical information systems impact the trustworthiness of the packages. Factors
that play a part in determining trust from individual engineers are: (a) The
years of activity on well-known platforms such as Github, (b) Star ratings on
development platforms, (c) Any negative experiences. We have to be careful
about individuals, as TrustSECO should not function as a surveillance instru-
ment. We do not want software engineers to get into trouble for, e.g., a bug that
they introduced in an important package because their intentions were probably
benign. The TrustSECO infrastructure will be developed in a way where trust
facts can be used to determine the trust in a software package, but cannot lead
to the individual trustworthiness of a software engineer decreased.
Software Organizations. Organizational behaviors show the ability to pre-
vent risks and provide effective support, the following factors are considered: (a)
Organizational support, e.g., fixing bugs on time and activity on the mailing list.
(b) Popularity, reputation, and user reviews, e.g., number of watchers, number
of contributors, user satisfaction.

4 Distributed Ledger Technology for TrustSECO

We select DLT as it enables the provision of trust knowledge as a “commons”, i.e.,
a resource that can be generated and consumed by the community. The current
vision is that the DL must be private, in order to guarantee the authenticity and
validity of the data, as well as to guarantee the interests of all participants in
the network. Therefore, we need to ensure that it is impossible to flood the DL
with anonymous parties’ trust facts.

The DL is filled by software packages providers and end-users to store events
that contribute to or detract from the trust score, for instance, the confirmation
of a reproducible build5 by an end-user (positive) or the observation of an oc-
currence of a package version in a CVE database (negative). The trust data will
be crawled and confirmed by the TrustSECO nodes, i.e., trusted nodes in the
network that collaboratively confirm trust facts, even to the extent that they
check for a reproducible build.

Trust facts that are mined from software repositories, gathered from users
and end-user organizations and collected from third-party trusted databases.
One of the challenges in this project is how we deal with oracles to obtain those
data from the outside world to accommodate in our DL [10], i.e., data sources
that can be considered as reliable or more reliable than TrustSECO, such as the
CVE database, national vulnerability databases, and software repositories. For
now, we will ensure that these databases are observed by multiple actors in the
TrustSECO platform, but in the future, we envision creating a hard connection
to these trusted systems.

5 https://reproducible-builds.org/

https://reproducible-builds.org/


TrustSECO: A Distributed Infrastructure for Providing Trust 9

The design of the ledger is non-trivial. We address three challenges. First, it is
challenging to design or select the consensus algorithms that best fit the ledger. In
particular, we will adopt the Raft [5] algorithm, to ensure that even under stress,
we are guaranteed consensus. We will need to find a balance between costs to
the network (of confirming data, for instance) and a healthy consensus size that
leads to reliable facts in the ledger. Secondly, we need to explore what the best
way is of handling the trusted third parties, such as Libraries.io and Github, who
provide excellent sources for data, that is typically un-compromised. As well as
the DL network must be confidential, which helps to eliminate some commercial
interests from undermining trust. Finally, we need to design mechanisms that
make the ledger sustained by the community, without incurring significant costs
to the participants in the ecosystem.

Based on these challenges, the main requirements for the ledger are: (a) The
DL must be scalable and cheap, (b) The DL must be easy and fast to search
through, (c) The DL must be tamper-proof, and (d) The DL’s transaction format
can evolve, so new transaction types can be stored later.

Before the DL design, we first need to explore the data that is available
about packages. There is a significant amount of trust data available online.
For instance, we explore how existing CVE databases are used, or we can use
digital signatures to ensure that a particular set of software engineers from a
particular location have worked on source code. While this does not guarantee
the reliability of the code, this kind of knowledge can be trusted by the software
end-users. The sources of our trust data are twofold:

Online Data Sources. We will make an exploration of the data that is avail-
able about package reputation. For instance, what data we can ethically gather
on package software providers, what data is available about project health, and
whether we can support customers of packages to give trust ratings to pack-
ages. Our initial experiments will be primarily with the data available on Li-
braries.io and our own generated data. A successful build reproduction by a
package end-user in the ecosystem, for instance, is a data point that adds
to the trust in a particular package. A list of potential data sources are: (a)
Github: project health, software developer identities, etc. (b)Libraries.io: stars,
SourceRank, etc. (c) Common Vulnerabilities and Exposures Databases: (c.1)
https://www.vulncode-db.com/, (c.2) https://nvd.nist.gov/vuln/search,
(c.3) https://cve.mitre.org/cve/, etc. (d) Repology.org: Contains data on
which package repository contains the most up-to-date package. Contains repos-
itory health statistics. (e) Owasp: Meta-data for what constitutes a trustworthy
package. (f) Trustix: Reproducible build data.

Software Stakeholders. TrustSECO participants will benefit from using Trust-
SECO data, accordingly, they must also provide data themselves. If a community
provides data about their satisfactory usage of a particular package, it will con-
tribute positively to the trust score. Furthermore, if end-users are not happy
with a particular package (version), it may detract from the trust score.

https://www.vulncode-db.com/
https://nvd.nist.gov/vuln/search
https://cve.mitre.org/cve/


10 Hou, Farshidi, and Jansen

The TrustSECO DAO for a Sustainable Infrastructure
We need a sustainable infrastructure that can independently function after the
academic project ends. As trust is a phenomenon created in the SECO as a form
of digital commons, it should also be managed by the ecosystem. The open-source
community has a track record of self-cleansing through transparency and commu-
nal solution finding, so we hypothesize that the ledger can sustain itself through
a contribution from the community. We envision a Distributed Autonomous Or-
ganization (DAO) [13], i.e., an organization governed by its participants through
rules and regulations formalized in smart contracts. The organization will have
to determine different things, such as who can enter the network and in what
conditions, and how the network resources need to be maintained.

To launch the DAO successfully, we take the DAO reference model of Wang
et al. [13] as a starting point, who address the major design decisions as a
choice in Organization Form, Incentive Mechanism, and Governance Operation.
We discuss the best way to enter the DAO and make design choices with our
industry partners on this basis. We aim to include incentives for participants
to participate in the infrastructure, such as access to exclusive data when a
participant provides hardware for the project.

5 Evaluation of the Proposed Platform and Future Work

Launching a platform such as TrustSECO requires extensive evaluation before
we can assume success. As we follow a design science approach [4], we must
continually evaluate our approach, our intermediate products, and our potential
stakeholders. The aim is to make our artifacts might reasonably and scientifically
by progressively improving and adapting the platform to meet the needs of the
experts and stakeholders we meet [12]. This is done by broadcasting our ideas
to the different communities that are working on software engineering, software
security, information systems, and distributed ledger communities. We are in
discussion, for instance, with the Lisk Center in Utrecht, where multiple DLTs
are under development. Meanwhile, there are multiple international commercial
stakeholders who have committed to this project with both research funding
and time. And accordingly our artifacts are evaluated with each increment of
the platform [12]. We are currently surveying commercial stakeholders and are
exploring how such parties would be willing to participate in the TrustSECO
platform.

Secondly, our artifacts are evaluated using technical experiments [12]. We
will evaluate the technical performance with real-world data. This approach
helps us to identify and address some potential performance problems such as
response time, number of concurrent users, Transactions Per Second or Queries
Per Second. For example, one concern is how our product handles the overhead of
adding query DL to the ecosystem whenever someone builds a software system,
especially when the system has dozens or even hundreds of components.

We define the following as near-future work. First, we will create a survey to
establish how our stakeholders would calculate trust scores based on the impact



TrustSECO: A Distributed Infrastructure for Providing Trust 11

factors identified in the SLR. Secondly, we continue developing the prototype
towards a minimum viable product for early experiments with existing package
managers. Thirdly, we intend to deliver a prototype for the score calculation
mechanism by the end of this year.

6 Conclusion and Status of the Project

This paper introduces the main concepts behind TrustSECO, a distributed
ledger-based infrastructure that aims to provide a trustful SECO. TrustSECO
targets the whole ecosystem instead of focusing on one language or package
ecosystem alone. With TrustSECO, software package providers can guarantee
that the software that has left software engineers’ desks worldwide is the same
as the software installed on the end-users’ systems and that the software is
maintained in a ‘healthy’ manner. Furthermore, TrustSECO provides users with
insight into the trust levels that they can put into the software they use daily.
Finally, we hope that TrustSECO can become the plumbing under the trust
system that guarantees the software we use to run a modern society. In the next
paragraphs, we report our progress.
Structured Literature Review into Software Trust - We have a team of
five researchers who have recently finished an SLR to determine how trust in
software is defined and the factors that positively or negatively influence the
perception of trust in the SECO by studying 593 scientific articles. We formu-
lated the following research questions to guide our study: (1) How is the concept
of software trust defined in literature? (2) What trust factors do end-user or-
ganizations consider when selecting software products? We uncover the trust
relationships between end-user organizations and (a) software producing organi-
zations, (b)software products and versions, (c)software developers, (d)software
package managers.
TrustSECO Infrastructure Prototype - We have developed a prototype of
the TrustSECO infrastructure6. The prototype works as a plug-in for the npm
and tells npm to avoid particular packages or package versions based on the trust
data that we have stored in the DL. The DL is a database of trust facts that
is currently stored in the Ethereum blockchain, but we are looking for another
platform for reasons of scalability [3].
Interview Study with Software Engineers - We conducted structured in-
terviews with twelve software engineers from different domains to explore how
they perceive trust during the software package selection [7]. From the inter-
views, we conclude three things. (1) Technical factors and ecosystem factors are
equally important. (2) Documentation, e.g. testing reports, training material,
or even grey literature, can give a first impression of the software’s technical
capabilities. (3) Trust is subjective. Different kinds of software engineers hold
different views on trust. Hence, provision of specific guidelines, reliable evidence,
and customized functionalities are needed to help end-users and organizations
build trust scores.

6 https://github.com/SecureSECO/TrustSECO

https://github.com/SecureSECO/TrustSECO


12 Hou, Farshidi, and Jansen

Business Model Exploration - We have received a research grant to explore
the business model that can sustain the TrustSECO infrastructure after the
academic project is finished. We are using the DAOCanvas7 to explore how we
make the TrustSECO infrastructure sustainable and self-governing with a DAO.

Acknowledgements - We wish to thank the TrustSECO team that participated in
the Odyssey Momentum Hackathon for their conceptual contributions to this paper.
Specifically, we want to thank Tom Peirs, Jozef Siu, Venja Beck, Floris Jansen, and
Elena Baninemeh for their inspirational ideas and their code on https://github.com/

SecureSECO/TrustSECO.

References

1. Cadariu, M., Bouwers, E., Visser, J., van Deursen, A.: Tracking known security
vulnerabilities in proprietary software systems. In: 2015 IEEE 22nd Int. Conference
on Software Analysis, Evolution, and Reengineering. pp. 516–519. IEEE (2015)

2. Cho, J.H., Chan, K., Adali, S.: A survey on trust modeling. ACM Computing
Surveys (CSUR) 48(2), 1–40 (2015)

3. Farshidi, S., Jansen, S., España, S., Verkleij, J.: Decision support for blockchain
platform selection: Three industry case studies. IEEE TEM (2020)

4. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS quarterly pp. 75–105 (2004)

5. Howard, H.: Arc: analysis of raft consensus. Tech. rep., University of Cambridge,
Computer Laboratory (2014)

6. Iqbal, M., Matulevičius, R.: Blockchain-based application security risks: a sys-
tematic literature review. In: International Conference on Advanced Information
Systems Engineering. pp. 176–188. Springer (2019)

7. Jansen, F., Jansen, S., Hou, F.: Trustseco: An interview survey into software trust.
arXiv:2101.06138 (2021), https://arxiv.org/pdf/2101.06138.pdf

8. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar (2013)

9. Larios Vargas, E., Aniche, M., Treude, C., Bruntink, M., Gousios, G.: Selecting
third-party libraries: The practitioners’ perspective. In: Proc. of ESEC/FSE. p.
245–256 (2020)

10. Lo, S.K., Xu, X., Staples, M., Yao, L.: Reliability analysis for blockchain oracles.
Computers & Electrical Engineering 83, 106582 (2020)

11. Paulus, S., Mohammadi, N.G., Weyer, T.: Trustworthy software development. In:
IFIP Int. Conf. on Comm. and Mult. Security. pp. 233–247. Springer (2013)

12. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research
evaluation. In: International Conference on Design Science Research in Information
Systems. pp. 398–410. Springer (2012)

13. Wang, S., Ding, W., Li, J., Yuan, Y., Ouyang, L., Wang, F.Y.: Decentralized
autonomous organizations: concept, model, and applications. IEEE Transactions
on Computational Social Systems 6(5), 870–878 (2019)

14. Zhu, M.X., Luo, X.X., Chen, X.H., Wu, D.D.: A non-functional requirements trade-
off model in trustworthy software. Information Sciences 191, 61–75 (2012)

7 https://daocanvas.webflow.io/

https://github.com/SecureSECO/TrustSECO
https://github.com/SecureSECO/TrustSECO
https://arxiv.org/pdf/2101.06138.pdf
https://daocanvas.webflow.io/

	TrustSECO: A Distributed Infrastructure for Providing Trust in the Software Ecosystem

